Pointwise a Posteriori Error Estimates for Elliptic Problems on Highly Graded Meshes

نویسنده

  • RICARDO H. NOCHETTO
چکیده

Pointwise a posteriori error estimates are derived for linear secondorder elliptic problems over general polygonal domains in 2D. The analysis carries over regardless of convexity, accounting even for slit domains, and applies to highly graded unstructured meshes as well. A key ingredient is a new asymptotic a priori estimate for regularized Green's functions. The estimators lead always to upper bounds for the error in the maximum norm, along with lower bounds under very mild regularity and nondegeneracy assumptions. The effect of both point and line singularities is examined. Three popular local estimators for the energy norm are shown to be equivalent, when suitably interpreted, to those introduced here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems

Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to ...

متن کامل

Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems

We prove local a posteriori error estimates for pointwise gradient errors in finite element methods for a second-order linear elliptic model problem. First we split the local gradient error into a computable local residual term and a weaker global norm of the finite element error (the “pollution term”). Using a mesh-dependent weight, the residual term is bounded in a sharply localized fashion. ...

متن کامل

Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates

This part contains new pointwise error estimates for the finite element method for second order elliptic boundary value problems on smooth bounded domains in RN . In a sense to be discussed below these sharpen known quasi–optimal L∞ and W 1 ∞ estimates for the error on irregular quasi–uniform meshes in that they indicate a more local dependence of the error at a point on the derivatives of the ...

متن کامل

A Posteriori Error Estimates for Semilinear Boundary Control Problems

In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...

متن کامل

Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems

An a posteriori error bound for the maximum (pointwise) error for the interior penalty discontinuous Galerkin method for a standard elliptic model problem on polyhedral domains is presented. The computational domain is not required to be Lipschitz, thus allowing for domains with cracks and other irregular polyhedral domains. The proof is based on direct use of Green’s functions and varies subst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995